

Week of	Pre-Lab/ PostLab	Activity	CURE Element
W0 Thursday Jan 26 th	POSILAD	No Lab Safety Training & Quiz: must be completed before Lab in W1, February 2 nd	
W1 Thursday February 2 nd .		Introduction to the Project: PyMol and Molecular Visualization Relevance: Reading a scientific paper & background. Accessing & Using Appropriate Data Bases The importance of record keeping: using your Template Library and Padlet T1 & T2 L1: Intro technique	Relevance Scientific Background
W2 Thursday February 9 th		Relevance & Scientific Background Presentation L2: Intro Techniques T3 & T4	Background & Hypothesis Development Presentation
W3 Thursday February 16 th	Lab Math 1, Hypothesis Post Lab	L3: Ist Experiments Introducing the Model System etc Computational Approaches to Explore the model system	Hypothesis Development, Presentation

W4 Thursday February 23 rd .	Proposal Post Lab	Designing appropriate assays to explore the project T5 Hypothesis Overview Presentation L4: Experiments relating foundational concepts of Chemistry to the project Hypothesis Development	Proposal
W5 Thursday March 2 nd .	Initial Rate Kinetics PreLab	T5 continued Proposal Presentations & Peer Review L5: Project related Experiments: control situation Quiz 1 T9	Proposal Presentation, Peer Review Experiments
Thursday March 9 th .	Spring Break	– No Lab	
W6 Thursday March 16 th .	Data Analysis Post Lab	Revised Proposal Due : L5: Project Related Experiments: control situation	Experiments Reproducibility Data Analysis
W7 Thursday March 23 rd .	Experimental Design PreLab	L6: T5,T6	Experiments
W8 Thursday March 30 th .	Data Analysis Presentation Post Lab	L6: Project Related Experiments- treatment situation(two weeks) Quiz 2	Experiments Data Analysis Presentation
Thursday April 6 th .	Easter Break	No Lab.	Experiments Data Analysis
W9 Thursday April 13 th	Titration Curve PreLab	L7 – Project Related Experiments- extending the research questions T5, T6	
W10 Thursday April 20 th	Data Analysis Post Lab	L8 – Project Related Experiments- extending the research questions	Experiments Data Analysis Presentation
W11 Thursday April 27 th		L7 – Data Analysis Presentation Prepare for Poster Presentations: Displaying Data T12	Data Analysis Conclusions
W12 Thursday May 4 th	Experimental Design PreLab	T5 – Repeat Key Experiment T8, Prepare for Poster Presentations Quiz 3	Data Analysis Conclusions Future Plans
W13 Thursday May 11 th		L11 – Final project presentations and discussion T8, T9: Peer Review	Presentation Peer Review

Grading Elements in the Course are embedded throughout the Semester and consist of the following elements, aligned with the 9 essential elements of research incorporated into the course.

Relevance & Background	(presentation)	5%	
Hypothesis Development	(presentation)	10%	
Proposal	(presentation)	20%	Rubric 1
Experimental Design & Ex	20%		
Reproducibility (Lab	Record Keeping)	10%	
Data Analysis (Data Presentations)			Rubric 2
Final Project Presentation	10%		
Peer Review (of proposal and final presentation, revisions etc)			Rubric 3
NCI Foundational Concept	ts (Quizzes)	5%	Rubric 4

Total

100%

Badges:

- 1. Making up a Solution
- 2. Checking Reagent Concentration
- 3. Preparing a Buffer
- 4. Titration Set up and Calculations
- 5. Measurement using TOTALS Approach

The TOTALS Approach in Science

Try Something

Observe what happens

Think

Adjust and try again

Leave Lab

Smiling and Satisfied

An Example: How do you decide how much enzyme to use? The TOTALS Approach:

When dealing with an enzyme where you do not know the specific activity, it is important to establish the correct amount of enzyme to use in assays. The trial and error approach is the only option you have. USE the **TOTALS** approach: make up your cuvette and for the first attempt at measuring the reaction, **Try some amount** (say 10 μ L of the enzyme solution you have) and **Observe** what happens...Then **Think**: measure the "rate"- there are three possible outcomes of this experiment-too much was

added, too little was added, or approximately the right amount was added, as shown in figure 1- curve d. After you have observed and thought about what the data told you, **Adjust** the amount of enzyme and repeat. If too much was added you can make a best guess as to how much too much from the shape of the resultant curve- if by the time you initiated the measurement the reaction was already at, or close to equilibrium you added much too much and probably need to dilute the enzyme 50-100 fold (curve a). If you added too little of the enzyme to get a reasonably measurable rate (curve b) you need to concentrate the enzyme or simply add more volume of the enzyme until you get a reasonably measurable rate. If you added approximately the right amount the issue is whether or not it extrapolates back to the starting absorbance (usually about 0.6 in an MDH assay) at t = zero, in which case it is fine to continue with your experiment (curve d), or whether the enzyme needs some dilution- curve c- (by either adding a smaller volume- this depends upon how small a volume you are comfortable being able to add accurately, or by diluting maybe an additional 5-10 fold). At this point you can **Leave Lab Smiling**, knowing that you have established how much enzyme to use to get great initial rate data!