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Chapter 2: Potential energy functions for 
protein design 

 

This chapter has been adapted from: Boas FE and Harbury PB. (2007) “Potential 

energy functions for protein design.”  Current Opinion in Structural Biology. 17: 199-

204. 

 

 

Summary 

Different potential energy functions have been used in protein dynamics simulations, 

protein design calculations, and protein structure prediction.  Clearly, the same physics 

applies in all three cases, so the variation in potential energy functions reflects 

differences in how the calculations are performed.  With improvements in computer 

power and algorithms, the same potential energy function should be applicable to all 

three problems.  Recently improved models of polarization, the hydrophobic effect, 

and hydrogen bonding may be applicable to both molecular mechanics and protein 

design. 

 

 

Introduction 

 Computational protein design algorithms use models of protein energetics to 

engineer protein sequences with new functions.  This is similar to more established 

branches of engineering, such as circuit simulation or stability analysis of buildings, 
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where accurate computer models are used to evaluate designs before they are built.  

Protein design provides a rigorous test of the energetic model that is used, because the 

design algorithm must pick functional sequences out of an astronomically large space 

of non-functional sequences. 

 As with any calculation, there is a tradeoff between accuracy and speed when 

modeling or designing proteins.  For example, simulation of a one-second dissociation 

event using a molecular dynamics calculation with explicit water would require 10 

million years on a typical desktop computer.  Protein design algorithms use several 

strategies to speed up the process.  First, protein design algorithms do not simulate 

kinetics, but rather calculate the energies of a small number of target states (these 

energies are used as a surrogate for the free energies of conformational 

neighborhoods).  Many fast algorithms exist for optimizing the structure of each target 

state.  Second, protein design calculations do not explicitly model water, but rather use 

a continuum representation of water.  Finally, protein design algorithms generally use 

less computationally intensive energy functions than molecular mechanics 

calculations. 

 Previous reviews have described potential energy functions (PEFs) used for 

molecular mechanics simulations,23,24 protein design,25,26 and protein structure 

prediction.27  In this review, we compare these energy functions (Figure 5).  We also 

describe advances in the molecular mechanics field that could be used in the next 

generation of design algorithms. 
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Figure 5.  Proteins can be modeled at different levels of detail. 

Potential energy functions for evaluating protein conformations range from quantum mechanics, which is accurate but very slow, to more 

heuristic energy functions that include statistical terms.  In between are molecular mechanics potential energy functions, which are the most 

thoroughly tested models of molecular energetics.  Currently, the protein design field uses heuristic energy functions, but the trend is towards 

using more physically based potential energy functions. 

 

 



Chapter 2: Potential energy functions for protein design 

 16

Potential energy functions 

 

Overview 

 Molecular mechanics potential energy functions (MM-PEFs) incorporate two 

types of terms: “bonded” and “non-bonded” (Figure 6).  The bonded terms apply to 

sets of 2 to 4 atoms that are covalently linked, and they serve to constrain bond lengths 

and angles near their equilibrium values.  The bonded terms also include a torsional 

potential that models the periodic energy barriers encountered during bond rotation.  

The non-bonded terms consist of the Lennard-Jones function (which includes van der 

Waals attraction, and repulsion due to orbital overlap), and Coulomb’s law.  The 

parameters for the bonded and non-bonded terms of an MM-PEF are derived from 

quantum calculations, and from thermodynamic, crystallographic, and spectroscopic 

data on a wide range of systems.23,24  MM-PEF’s have been used predominately to 

simulate protein folding and dynamics, and are also used to refine X-ray crystal 

structures. 

 An alternative type of potential energy function is the knowledge-based, or 

statistical, energy function27,28 (Figure 7).  This type of energy function derives from 

the database of known protein structures.  The probabilities that residues appear in 

specific configurations (such as rotamer conformations, or buried vs. surface 

environments), or the probabilities that pairs of residues appear together in a defined 

relative geometry is calculated.  These probabilities are converted into an effective 

potential energy using the Boltzmann equation: ΔG = –RT ln(pobs/pexp), where pobs is 

the probability of seeing a particular structural element, and pexp is the expected 



Chapter 2: Potential energy functions for protein design 

 17

probability of seeing that structural element based on chance.29-31  The advantage of a 

knowledge-based energy function is that it can model any behavior seen in known 

protein crystal structures, even if no good physical understanding of the behavior 

exists.  The disadvantage is that these energy functions are phenomenological and 

can’t predict new behaviors absent from the training set. 

 Design potentials include a combination of MM-PEF, knowledge-based, and 

other terms.  In contrast to MM-PEFs, which have become fairly standardized, design 

potentials vary enormously between labs.  The various terms are typically calibrated 

and weighted to optimize performance for one type of prediction, such as experimental 

binding energy,12,32 or to produce native-like sequences when redesigning natural 

proteins.7  By way of illustration, we describe the potential energy functions used in 

two recent landmark protein design papers.  In the first example, Looger et al. 

redesigned various bacterial periplasmic binding proteins to bind trinitrotoluene, 

lactate, and serotonin.2  Their energy function included a Lennard-Jones term (using 

CHARMM22 parameters14) with the repulsive component scaled down to 35%, a 

Coulombic term with a distance-dependent dielectric constant of 8.0r and partial 

charges from CHARMM22, an explicit hydrogen bonding term derived from the 

DREIDING MM-PEF,33 a surface area-based solvation term, a knowledge-based 

rotamer term,34 and a term requiring all hydrogen bond donors and acceptors to be 

satisfied.  In a subsequent paper, Dwyer et al. designed de novo triosephosphate 

isomerase activity into ribose binding protein,3 using a more accurate electrostatics 

model that included multiple geometry-dependent dielectric constants.35  In the second 

example, Kuhlman et al. designed a 93-residue protein with a new α/β fold.7  Their 
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energy function included an LJ term (with radii fit to match the distribution of 

distances seen in the PDB, and well depths from CHARMM19), a Lazaridis-Karplus 

empirical solvation term,36 a knowledge-based hydrogen bonding term,37 a 

knowledge-based rotamer term, and a knowledge-based pairwise residue interaction 

term.  The scaling factors for each term were adjusted to optimize recovery of native 

sequences when redesigning a training set of 30 proteins. 

 Why are MM-PEFs and design PEFs so different, and why do the latter include 

so many ad hoc terms?  The basic answer is that design PEFs must compensate for an 

incomplete simulation of protein behavior: many degrees of freedom are either 

ignored, modeled implicitly, or sampled at low resolution.  We examine this question 

term-by-term in the following sections. 

 

 
 

Figure 6.  Molecular mechanics potential energy function with continuum solvent. 
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Figure 7.  Knowledge-based potential energy function. 
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Bonded terms 

 Although it is straightforward to directly use the bonded portion of MM-PEFs 

to determine the relative energies of different rotamer geometries, design potentials 

have tended to use fixed rotamer coordinates and knowledge-based rotamer potentials.  

MM-PEF bonded energies vary greatly with small changes in bond lengths and angles.  

Thus, these energies are not meaningful unless the structures have first been locally 

energy minimized (perhaps with dihedral angle restraints). 

 

Lennard-Jones 

 The Lennard-Jones (LJ) function includes a weakly attractive component at 

long distances (the van der Waals energy), and a strongly repulsive component at short 

distances.  The repulsive component is sensitive to small atomic displacements: the LJ 

energy of a protein crystal structure can decrease by hundreds of kcal/mol upon local 

energy minimization, despite imperceptible changes in the atomic coordinates. 

 The discrete rotamer sampling used for protein design calculations inevitably 

leads to small atomic overlaps, producing large unfavorable Lennard Jones energies.  

In many cases, the overlaps could be eliminated by local minimization, but such 

minimization cannot be readily incorporated into combinatorial sequence design 

algorithms.  Instead, the functional form of the LJ interaction is almost always 

softened so that overlaps are less energetically unfavorable.  For example, the LJ radii 

can be scaled down,38 the repulsive component of the LJ energy can be scaled down,2 

or the LJ function can be linearly extrapolated below a cutoff distance.7 
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 Softening the LJ function is based on a presumption that protein cores are 

reasonably fluid and thus can always rearrange to accommodate small overlaps.  

However, this modification always leads to qualitative and quantitative errors in 

interaction energies.  For example, modern MM-PEFs model hydrogen bonds as a 

combination of an electrostatic interaction and an LJ interaction.  When overlaps are 

allowed, atoms can approach more closely, producing artificially favorable hydrogen 

bond energies.  In general, changing the LJ parameters in any way will destroy the 

delicate balance engineered into an MM-PEF.  Use of unmodified LJ functions for 

protein design will require either very high resolution discrete sampling, or some form 

of continuous optimization. 

 

Solvation 

 Computing the energy of a protein embedded in explicit solvent molecules is 

time consuming, because the energy must be averaged over many solvent 

configurations.  To speed up calculations, solvent can instead be modeled as a smooth 

continuous material with a characteristic dielectric constant and surface tension.  The 

solvation energy of such protein continuum-solvent systems is generally separated into 

two components.  The first component is the hydrophobic effect, which accounts for 

the interfacial free energy of the uncharged protein and the continuum solvent.  The 

second component is the solvent polarization energy, which accounts for the 

interaction of partial charges in the protein with dipoles and ion clouds induced in the 

solvent.  Charged atoms closer to the protein’s surface have more favorable solvation 

energies and smaller apparent charge-charge interactions. 
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 Both the LJ function and Coulomb’s law are pairwise factorable, meaning that 

the total energy can be expressed as a sum of interactions between pairs of atoms 

without regard to the position of any other atom in the system.  This is important, 

because the total energy can then be determined by summing precalculated pairwise 

interaction energies (required for most rapid structural optimization procedures).  

Solvation energies, on the other hand, are not inherently pairwise factorable.  The 

interaction between two charges depends on the positions of other atoms, because the 

other atoms displace solvent and salt. 

 

Hydrophobic effect 

 The continuum hydrophobic effect has traditionally been modeled as being 

proportional to the solvent accessible surface area of a solute.39  Pairwise-factorable 

approximations of surface area have been developed for use in design calculations.40  

Although widely applied, the surface area-based model has clear limitations.  For 

example, hydrophobic solutes in water can interact favorably when they are separated 

by a single layer of water molecules.41  This type of interaction is completely absent 

from a surface-area based energy.  Wagoner and Baker have developed a model42 of 

the hydrophobic effect that captures such complex wetting phenomena, and produces 

energies that are closer to explicit solvent simulations than are surface-area based 

energies.  Their energy function includes a term proportional to surface area, a term 

proportional to volume, and a solute-solvent van der Waals term.  Adapting this 

improved model for protein design work will require either the development of a 
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pairwise-factorable approximation, or the use of a design algorithm that does not 

require precalculated energies. 

 

Solvent polarization 

 Solvent polarization is very difficult to simulate quickly and accurately.  

Consequently, many different empirical models that subsume polarization energies 

have been used in protein design efforts.34-36,43  These models commonly include a 

solvation energy for charged atoms based on accessible surface area, and a Coulomb’s 

law term with a distance-dependent dielectric constant.  The surface area models 

disregard the non-zero contributions of fully buried charges to the polarization energy.  

The distance-dependent dielectric constant scales down Coulomb’s law to account for 

screening of charge-charge interactions by water.  However, it ignores the fact that 

screening depends on the local environment of each charge. 

 A more physical approach is to solve the Poisson-Boltzmann (PB) differential 

equation44 that describes the relationship between fixed charge and the electric 

potential in a continuum dielectric environment.  Water is assigned a dielectric 

constant of 80, the protein interior is typically assigned a dielectric constant between 1 

and 20, and the molecular surface defines the boundary between protein and solvent.  

Values of the electric potential on a spatial grid can be obtained using a finite-

difference algorithm.  Marshall et al.45 describe a pairwise-factorable approximation to 

the PB equation based on summing precalculated energies for single residues and for 

pairs of residues.  However, this treatment does not take into account rotamer-
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conformation dependent changes in the protein-solvent boundary, or that solutions to 

the PB equation are not truly superimposable. 

 Alternatively, the generalized Born equation15 provides a fast approximate 

solution to the Poisson-Boltzmann equation, and it has been used for protein design.46  

Recent improvements to the generalized Born functional form47,48 yield solvation 

energies that are comparable to those derived from finite-difference calculations.49 

 

Explicit water 

 Continuum solvent models break down when water molecules are tightly 

bound to proteins.  However, it may be possible to incorporate a handful of explicit 

water molecules in a continuum solvent calculation.  Schymkowitz et al. developed a 

method for predicting positions of tightly bound water molecules in proteins.50  Jiang 

et al. show how to incorporate water molecules into amino acid rotamers.51 

 

Hydrogen bonds 

 In an MM-PEF, hydrogen bonds are typically modeled as dipole-dipole 

interactions.  The optimal geometry for a dipole-dipole interaction, for example 

between the C=O and N-H dipoles in the protein backbone, places all four atoms in a 

straight line.  However, the charge distribution around the carbonyl oxygen adopts a 

trigonal sp2 arrangement, which is not spherically symmetrical.  The sp2 lone-pair 

geometry should favor a bent hydrogen bond.  Morozov et al. showed that the bent 

geometry is indeed preferred according to quantum calculations and crystal structures 
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in the PDB.52  Using the PDB statistics, they developed a knowledge-based hydrogen 

bonding energy function37,53 and used it to design a new protein.7 

 

Solute polarization and quantum effects 

 A widely recognized limitation of MM-PEFs is that they assume fixed atomic 

charges, and do not model environment-dependent rearrangement of charge on a 

solute.  Recently developed polarizable force fields address this limitation by allowing 

the electric field to induce dipoles at each atom.54,55  Importantly, solute polarization 

breaks down the pairwise-factorability property of traditional MM-PEFs.  MM-PEFs 

also do not model chemical realities such as bond formation, partial covalent character 

of hydrogen bonds, and lone pairs.  One possible compromise is to model key parts of 

the protein using quantum mechanics, and the rest of the protein using molecular 

mechanics.56,57 

 

Reference states 

 Protein design potentials frequently use implicit reference states.  The MM-

PEF can only tell the energy difference between different conformations of the same 

sequence.  To compare different sequences, we must subtract the energy of each 

sequence in an alternative undesired conformation, such as the unfolded or unbound 

states.  These undesired conformations are typically treated implicitly by subtracting a 

fixed reference energy for each amino acid. 

 The unfolded and unbound states can also be modeled explicitly.  For example, 

the unfolded state can be modeled using fixed reference energies for each amino acid, 
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plus a random walk model of long range electrostatics.58  The unbound state can be 

modeled explicitly using the same structural optimization algorithm used on the bound 

state. 

 Modeling the correct reference states is critical to calculating the binding 

energy of a complex.  For example, the binding energy due to a salt bridge or 

hydrogen bond is the interaction energy of the charges in the bound conformation, 

relative to their interaction energies with water in the unbound conformation.  A 

typical salt bridge might have a Coulomb interaction energy of 50 kcal/mol, but this is 

almost completely canceled out by the charges interacting with water in the unbound 

state.  Thus, accurate calculations of the energies of both the bound and unbound 

structures are needed to calculate accurate binding energies.  In many cases, salt 

bridges are actually destabilizing relative to a hydrophobic interaction59: the charges 

would prefer to interact with water than with each other. 

 

Search algorithms 

 Three major algorithms have been used to search through sequence and 

conformational space in protein design.  Many variations and hybrid algorithms are 

possible, but here we describe a typically implementation of each algorithm, and 

briefly discuss the advantages and disadvantages of each. 

 The dead-end elimination (DEE) algorithm34,60 starts with a set of rotamers at 

each position in the protein, and a precalculated matrix of interaction energies between 

these rotamers.  The algorithm uses a series of filters to eliminate rotamers that 

provably can not be present in the global energy minimum.  Typically, a large fraction 
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of the rotamers can be eliminated, and the remaining rotamers are searched by 

exhaustive enumeration or Monte Carlo search.  The advantage of DEE is that very 

large sequence and structural spaces can be searched comprehensively.  Sequence and 

structural space are typically searched simultaneously, which requires the use of an 

implicit reference state.  In other words, undesired conformations such as the unfolded 

or unbound states are typically not modeled explicitly, but rather are treated using 

fixed reference energies for each amino acid.  Thus, for example, dead end elimination 

does not distinguish between intramolecular and intermolecular interactions, and will 

propose mutations that stabilize the protein without improving its interaction with the 

ligand.61  Reference states could be included if DEE were only used for structural 

optimization of single sequences, with another procedure used for sequence 

optimization.  This is typically not done because it is much faster to optimize sequence 

and structure simultaneously. 

 The mean field algorithm19,62 also uses a rotamer-based picture with 

precomputed energy matrices.  However, rather than finding a single low energy 

structure, mean field treats the protein as a probabilistic ensemble.  Each rotamer is 

assigned a probability, and these probabilities are updated iteratively to match the 

Boltzmann distribution.  The final probabilities can be used to calculate the protein’s 

conformational entropy.  The mean field algorithm is typically used to optimize the 

structure of a single sequence, and the sequence optimization is typically done using a 

genetic algorithm.  The advantage of this approach is that undesired conformations 

such as the bound, unbound, and unfolded states can be modeled explicitly.  The use 
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of multiple states allows for stability, affinity, and specificity to be explicitly 

calculated and optimized. 

 Monte Carlo methods63-65 typically start with a single protein structure, and use 

a set of moves to perturb this structure.  If the new structure has a lower energy, then it 

is accepted.  If the new structure has higher energy, then it is accepted with probability 

/E RTe−Δ , where ΔE is the energy change, and T is the temperature, which is slowly 

annealed to 0.  The advantage of this approach is that there is no need to precompute 

large energy matrices.  Thus, it is CPU-intensive rather than memory-intensive, which 

better matches today’s distributed computing systems.  Furthermore, the energy 

function can include non-pairwise additive terms such as polarization.  The Monte 

Carlo moves can include randomly switching from one rotamer conformation to 

another, but they can also include non-rotameric moves. 

 The Baker lab has developed a clever strategy for including backbone 

flexibility in protein design7,66.  They alternate between sequence design on a fixed 

backbone, and structural optimization for a designed sequence. 

 

 

Conclusions and future directions 

 The techniques described above have been used to design proteins with a wide 

variety of new functions.  Clark et al.60 optimized the recombining site of an antibody 

to increase the ligand affinity, and Lazar et al.10 optimized the Fc region of an 

antibody to bind more tightly to the Fc receptor.  Ashworth et al.64 redesigned an 

endonuclease to recognize and cut a heterologous DNA sequence.  Kuhlman et al.65 
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designed a protein that reversibly switches between two distinct protein folds with a 

change in pH or cobalt concentration. 

 These examples illustrate the diverse range of useful functions already 

accessible by protein design.  As potential energy functions, search algorithms, and 

computational power continue to improve, protein design should become a standard 

and general research tool. 

 

 

Acknowledgements 

This work was supported by the National Institutes of Health (GM068126-01 to 

P.B.H.).  F.E.B. was supported by a training grant from the National Institute of 

General Medical Sciences (5T32 GM07365-28). 

 




